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The forward motion of a monocycle is studied in terms of a mechanical model: a cylinder with an inverted pendulum attached 
to it by a hinge. The rotation of the pendulum about the cylinder is implemented by an electric drive. The monocycle can be 
moved (rolled) over a surface with the help of the same drive. The control parameter is a voltage of bounded magnitude. A 
control law (with saturation), linear in the phase coordinates, is constructed, under which the pendulum is stabilized in the upper 
unstable equilibrium position, while the monocycle is maintained in position or moved. The domain of attraction of the desired 
steady state may be made the maximum possible (in the linear approximation). The domain of stability of the equilibrium state 
of the system is constructed in the plane of the following parameters: the total feedback gain and the delay. Delay appears in 
the control loop when there is an inductance in the rotor circuit of the motor. © 2005 Elsevier Ltd. All rights reserved. 

The monocycle is of interest as an object of both theoretical and applied research. A new means of 
transportation, advertised in recent years as the Segway ® Human Transporter,~ is designed as a mono- 
cycle seating one person. Lacking control, the motion of such a monocycle is unstable: it has to be 
stabilized by a system controlling the motion of the device. 

In any practical system, control actions are limited in some way or another, so that an unstable object 
cannot be put into the necessary mode of operation from any state. In other words, the controllability 
domain, namely, the set of states from which, with the available control resources, the object may be 
brought to the desired mode of operation, occupies only part of the phase space. The domain of 
attraction of the desired mode of operation, resulting from the construction of a specific law of feedback 
control, is a subdomain of the controllability domain; most frequently, it occupies only part of the latter. 
In that situation it is an extremely important problem to maximize the domain of attraction for bounded 
control actions. 

Examples of unstable controllable systems are a bicycle with a gyroscopic stabilizer [1] and a monocycle 
with a gryostabilizer [2] designed at the Moscow State University Institute of Mechanics. 

Many unstable mechanical systems contain inverted pendulums as components. The control of a one- 
link pendulum and stabilization of its unstable upper equilibrium position are classical problems of 
theoretical mechanics and control theory. In most studies they are solved by displacing the point of 
suspension of the pendulum (see [3-5], etc.). The plane motion of a one-link pendulum with fixed 
suspension point has also been investigated theoretically and experimentally [6-8]. Attached to the end 
of such a pendulum is an electric motor with a flywheel. A control law has been constructed for the 
motor, under which the pendulum may be brought from any initial state to the unstable upper equilibrium 
position and stabilized there. The problem of flywheel stabilization has also been studied for an inverted 
pendulum on a cylinder [9]. Some problems touching upon the stability of motion of a one-wheel bicycle 
have also been considered [10]. 

The present paper is concerned with the forward motion of a cylinder (monocycle) with an inverted 
pendulum, rolling without slipping on a horizontal surface. The mechanical system studied has two 
degrees of freedom and one control input. The problem of controlling the unstable system presents 
the most difficulties when the number of control inputs is less than the number of degrees of freedom. 
A solution will be presented here of the problem of synthesizing a feedback control of bounded 
magnitude. We know of no publications in which such problems are solved for a monocycle. 

tPrikl. Mat. Mekh. Vol. 69, No. 4, pp. 569-583, 2005. 
:~See www.segway.com 
0021-8928/S--see front matter. © 2005 Elsevier Ltd. All rights reserved. 
doi: 10.1016/j.jappmathmech.2005.07.003 
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Fig. 1 

1. THE M E C H A N I C A L  M O D E L  OF A M O N O C Y C L E  

To investigate the forward motion of a monocycle, we consider a system consisting of three absolutely 
rigid bodies linked together by cylindrical hinges at axes C1 and C3 (Fig. 1). The axes of the hinges are 
perpendicular to the plane of the diagram. Body 1 is a cylinder, 2 is a pendulum, rigidly attached to 
which is the stator of an electric motor and 3 is a pinion, to which the rotor of the motor is rigidly attached. 
In the device called "Segway", body 2 also includes the person on the device. The centre of mass of 
body 2 is at the point Ca and that of body 3 on its axis of rotation C3. We let m i denote the mass of 
body i (i = 1, 2, 3) and Pi its radius of inertia about the centre of mass Ci. 

A cylinder of radius r, symmetrical about its axis C1, can roll without slipping along a straight line 
on horizontal surface. Let tp denote the angle through which some fixed radius (marked on the cylinder), 
directed at the beginning of the motion along the horizontal axis X, rotates counter-clockwise; let x 
denote the displacement of the centre of mass of the cylinder, so that k = -(or. 

Pendulum 2, which may oscillate in a vertical plane, is linked by a hinge to axis C1 of cylinder 1. 
Figure 1 provides a side view of this cylinder together with the inverted pendulum attached to it. Let  
13 denote the angle of deflection of body 2, or more precisely, the angle of deflection of the straight 
line C1C2, from the vertical, measured counter-clockwise. 

Rigidly attached to cylinder 1 is a hollow inner-tooth cylindrical surface of radius rl whose axis 
coincides with the axis C1 of the cylinder. Pinion 3 of radius 1"3 can roll around the inside of this toothed 
surface. When rolling, the pinion rotates freely around the C3 axis, which is attached to the pendulum 
(Fig. 1). Attached to the pendulum is a DC electric motor whose stator, as already mentioned, is rigidly 
attached to the pendulum, and its rotor to pinion 3. To simplify matters, we will consider the case in 
which all the centres of mass C,- (i = 1, 2, 3) lie on the same straight line. Under these conditions, if 
C1C 2 -~ r 2, C1C 3 = r 1 -r3,  then C2C 3 = r 2 + r 1 - r  3. 

The mechanical system considered consists of three bodies and has two degrees of freedom, 
characterized by generalized coordinates tp and ]3 or x and ~. The variable ~p is cyclic, and hence so is 
x. If this variable is ignored, the system has one and a half degrees of freedom. Setting up the equations 
of motion below, we shall make allowance for the variation of electric current in the rotor circuit. The 
charge is a cyclic coordinate; if it is ignored, the electromechanical system has two degrees of freedom. 

With the generalized coordinates defined above, the expressions for the horizontal and vertical 
components VGx and Vciy of the velocity vector Vc~ of the centre of mass Ci (i = 1, 2, 3) are 

Vc, x =.2,  Vc2 x =.2-~r2cos[~ , Vc3 x = . 2 + ~ ( r  l-r3)cos[~ 
(1.1) 

VCIy = 0 ,  VC2y = --[~r2sin~, Vc3y = ~l(r l-r3)sin[~ 
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Since plane motion of the monocycle is being studied, the vectors of the absolute angular velocities 
of all three bodies are perpendicular to the vertical XY plane. The magnitudes Oi (i = 1, 2, 3) of these 
angular velocities are 

Yc, ( r 3 - r l ) . r l x  •.fc 
(1.2) 

where )~ = rflr 3 > 1 is the transmission ratio of the reductor. 
Taking relations (1.1) and (1.2) into consideration, we obtain the following expression for the kinetic 

energy 

3 
1 2 2 2 1 .2 

= mi( Vc i + Di ~'~i ) = T ~ ~ [ a l l X  +2(f l12-a12cCOS~) .~+a22~ 2] (1.3) 
i=1 

where 

2 2  2 2 , 2  2 
a l l  = m l + m 2 + m 3 + m l P l / r  +m3P3)  C Ir , a12 = m 3 P 3 Z ( Z - 1 ) / r  

2 2 1)2(r]  133 a12c = m 2 r 2 - m 3 ( r l - r 3 ) ,  a22 = m 2 ( r 2 + P 2 )  + m 3 ( ~ -  + 2) 
(1.4) 

The potential energy is (g denotes the acceleration due to gravity) 

II = [m2r 2 -  m3(r 1 - r3)]gcos[~ = al2cgcos ~ (1.5) 

No allowance will be made for the torque of the friction forces resisting the rolling of the cylinder. The 
influence of that torque on the motion of the system will be estimated below. 

Considering the inverted pendulum, we shall assume that r 2 > 0 and, in addition, that 

m2r 2 > m3( r  I - r3) (a12 c > O) (1.6) 

that is, the centre of mass of the pendulum together with body 3 is situated above the axis C1 of the 
cylinder. 

The magnetic energy of the system can be represented as 

(1.7) 

Where I is the current through the circuit of the rotor of the electric motor, L is the inductance of the 
circuit and c is the so-called coefficient of electromechanical interaction. Using expressions (1.3), (1.5) 
and (1.7), we can write the Lagrangian [11, 12] of the system as 

1 .2 = T - H + W  = ~[allX +2(a12-a12ccos~)~+a22~2] - 

1 2 x 
(1.8) 

2. THE EQUATIONS OF MOTION 

Using Lagrange's method of the second kind [11, 12] and expression (1.8), we set up the equations of 
motion of the system 

a l l  J( + (al2  - alzcCOS~) ~ + a l 2 c s i n ~  2 = c~ I 
r 

(al2 - al2ceOS~)J( + a22 ~ - al2cgsin~ = c)~l (2.1) 
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where R is the ohmic resistance of the rotor circuit and U is the voltage applied to it, which plays the 
role of a generalized force. The quantity cI, proportion to the current / ,  describes the torque M of the 
electromagnetic forces acting between the stator and the rotor. The third equation of the system, 
Kirchhoff's equation, describes the transients in the rotor circuit. 

The voltage U applied to the motor is bounded in absolute value: 

[U(t)[ < U 0 (U 0 = const) (2.2) 

Equations of the form (2.1) describe the motion of a cylinder with a pendulum suspended on its axis, 
whatever the design of the reductor of the control drive. The motion of the monocycle will be controlled 
by using internal forces. Under the influence of an internal moment, a relative displacement will be 
imparted to the pendulum and the cylinder. The external forces arising during this relative motion will 
be "organized" in such a way that the mechanism as a whole will move in the desired manner. 

We introduce a dimensionless time variable ~ by the formula t = a3"t, where 0 = ~/r/g ; then Eqs (2.1) 
may be written in dimensionless variables as follows: 

~0"+ (jl COS~- J2)~"-  Jl s i n ~  '2 = - i  

(jlCOS[ 3 -J2)q )'' + J3~"-  Jl sin~ = i (2.3) 

Oi' + i + p (~ ' -q~ ' )  = u 

The prime denotes differentiation with respect to the dimensionless time x. The five dimensionless 
parameters of the system are 

al2c a12 a22 L C 2 ~21,~ 
Jl . . . . . . . .  ' J2 = - - '  J3 = 2' 0 = ~--~, p = ~a l l r2  (2.4) allr allr allr 

and the dimensionless current and voltage are 

i =  c x  I, 
a l l r g  

c X 
u = -  U 

R a l l r g  

Inequality (2.2) becomes, in the new notation, 

[ul<u0, u0 = Ral~rg U° (2.5) 

If the inductance L in the rotor circuit (an electromagnetic constant of the time 0) is ignored, the 
order of the system of equations (2.1) is reduced by one. In dimensionless variables, one obtains instead 
of (2.3) the system 

~0"+ (jlCOS~ - J 2 ) ~ " -  J l  s i n ~  '2 = - u + p ( ~ ' - ~ 0 ' )  

(Jl  COS[~ - j2)~O" + j3[~" - Jl  sin~ = u - p(13' - 9 ' )  
(2.6) 

We introduce the notation 

Then 

c I = c / R  and c 2 = c2/R (2.7) 

C • ClX 
u = - U =  U ,  

R a l l r g  a l l r g  

ClX C 2 X21~ C2Z20 
UO = UO' P -  --- 2 (2.8) 

allrg Rallr2 allr 

If the inductance in the rotor winding is ignored, the torque M of the electromagnetic forces applied 
by the stator to the rotor is given by the expression [13] 

M = c I U -  c2x (  ~ - ¢ )  (2 .9)  



520 Yu. G. Martynenko and A. M. Formal'skii 

The positive constant coefficient cl and c2 (the back-emf coefficient) may be evaluated on the basis of 
the certified values of the starting and nominal torques, the nominal angular velocity and nominal voltage 
of the motor [13]. Knowing the values of cl and c2, one can use formulae (2.7) to evaluate the coefficient 
c and the ohmic resistant R. 

It shall be noted that the model (2.6) of the motion of a monocycle with inverted pendulum has much 
in common with the model of a flywheel-controlled pendulum [6-8]. Both models have a cyclic 
coordinate, they are of the same order, and each model has one stable and one unstable equilibrium 
position. As will be shown below, both models, linearized about the unstable equilibrium position, have 
one positive eigenvalue and two negative ones. These remarks account for the similarity of  the methods 
and the results of investigating both systems. 

3. S T A B I L I Z A T I O N  OF T H E  P E N D U L U M  IN ITS U P P E R  U N S T A B L E  
E Q U I L I B R I U M  P O S I T I O N  

In this section we shall investigate the simplified mathematical model (2.6), assuming that the time 
constant 0 is negligibly small. 

We will consider the problem of stabilizing the pendulum in its upper equilibrium position 13 = 0, on 
the assumption that it is already in the neighbourhood of the desired position at the beginning of the 
stabilization process. By this assumption, circular motions of the pendulum are excluded from consideration. 

Linearized equations. We shall assume that, during the process of stabilizing the upper equilibrium 
position, the angle 13 and its derivative are close to zero. Then, linearizing Eqs (2.6), we obtain the system 
of equations 

qY'+j413" = - u +  p (~ ' - (p ' ) ,  j4(p" + j3~"- j113 = u - p ( ~ ' - C p ' )  (3.a) 

where J4 = Jl --J2" 
Since the angle of rotation q0 of the cylinder is a cycle variable, we can introduce the angular velocity 

co = q0' into the equations of motion (2.6) or (3.1), after which systems (2.6) and (3.1) become third- 
order systems. This substitution gives the linear equations (3.1) the form 

O)' + po~+ j 4 ~ " - p ~ '  = - u ,  j 4 0 Y - p o l +  j313" + p ~ ' - j l ~  = u (3.2) 

When u = 0 the non-linear system (2.6) and the linear system (3.2) have the trivial solution 

o ~ = c p ' = 0 ,  1 3 = 0 ,  1 3 ' = 0  (3.3) 

corresponding to the vertical (unstable) equilibrium position of the pendulum and the cylinder at rest. 
The problem of stabilizing the equilibrium (3.3) will be considered later. 

Solving Eqs (3.2) for the higher derivatives, we can write them in matrix notation as 

z' = Bz + hu (3.4) 

Z = 

Zl 

Z2 = 

Z3 

h = 

hi , 

0 

h3 

B --IIb/kll = 
bll b12-bl l  , 
0 0 1 l , k  = 1,2,3 

b31 b32-b31 

- -  ~ . 2  hi = J3+J4  h3 Ja +1  JlJ4 Jl,  j s = J 3 _ J 4  
- J--~' = J5 ' bll = p h i '  b12 = - J 5 '  b31 = ph3' b32 - J 5  

The quantity j5 is proportional to the determinant of the positive-definite matrix of the kinetic energy 
at 13 = 0, hence it is positive, which can also be verified directly by using expression (2.4) for the 
dimensionless parameters. The desired equilibrium position (3.3) in the new variables has the form 
z = 0. It follows from Kalman's criterion [14] that system (3.4) is completely controllable if and only if 

detllh, Bh, B2hll = h~(hzb32- h3bl2  ) ~ 0 (3 .5)  



The theory of the control of a monocycle 521 

Using the notations (1.4) and (2.4), it can be shown that j4 + 1 > 0, and thus also h3 > 0. The expression 
hlb32 -h3b12 , as is readily shown, vanishes if an only i f j l ( j  4 + 1) = 0. Since j4 + 1 ¢ 0, inequality (3.5) 
fails to hold if and only if ix = 0, that is, when 

al2 c = m 2 r 2 - m 3 ( r l - r 3 )  = 0 (3.6) 

Equation (3.6) holds only in the case that the centre of mass of the pendulum together with body 3 lies 
on the axis C1 of the cylinder. If condition (1.6) holds, system (3.4) is completely controllable. 

Note that in case (3.6) both the linearized system (3.1) and the initial non-linear system (2.6) have 
the integral 

2 
[ m l ( r  2 + p~) + m2 r2 + m3(r  2 + p3~)]tp + 

2 2 2 
+ [m2(r22 + 102) + m3r3(1 - Z) 2 + m3P3(1 - ~)]~l' = C = const 

which is an integral of the angular momentum of the system relative to the instantaneous centre (axis) 
of the velocities - the axis along which the cylinder is in contact with the supporting surface. 
Consequently, if condition (3.6) holds, not only the linear system (3.1) but also the non-linear system 
(2.6) are uncontrollable. 

Eigenvalues of the open-loop system. We will find the position in the complex plane of the eigenvalues 
of the open-loop system obtained from (3.4) by putting u = 0 (U = 0), i.e., the eigenvalues of the matrix 
B. The characteristic equation of this third-order system has the form (g is the spectral parameter) 

F(g)  = I.t3j5 + g2p(1 + J3 + 2j4) - gJl - PJl = 0 (3.7) 

Taking c 2 = 0 as the origin (that is, assuming that there is no back-emf), we can then infer from 
relations (2.8) thatp = 0. If condition (1.6) holds, then j l  > 0 (see notation (2.4)). Equation (3.7) when 
p = 0 has two non-zero real roots, differing only in their signs, and one zero root: 

~11 = J l ~ '  I't2 = 0, J.t 3 = - -  J l ~  (3.8) 

that is, the spectrum of the open-loop system a tp  = 0 is symmetrical about the imaginary axis. This is 
natural, since when c2 = 0 the open-loop system is conservative. When the back-emf is "added" (c2 > 0, 
p > 0), the zero eigenvalue is displaced to the left, and the two others are also displaced, but remain 
positive and negative for all values o fp  > 0. This statement holds because the function F(g) changes 
sign three times as its argument g varies from --~ to +~o. Its graph intersects the negative g axis twice 
and the positive axis once. Indeed, 

F ( - ~ )  = - ~  < O, F(-p )  = p3(j 4 + 1)2 > 0, F ( 0 )  = - P J l  < O, F (+  oo) = + ~  > 0 

The inequality F(-p) > 0 is true, sincep > 0 and j4 + 1 ¢ 0, but F(0) < 0, sincep > 0 andja > 0. 
Thus, if condition (1.6) is satisfied, the characteristic equation (3.7) has three real roots - one positive 

(gl > 0) and two negative (g2, g3 < 0). Thus, the system under consideration, lacking control - that is, 
in the open-loop state - is unstable. The situation is analogous for a flywheel-controlled pendulum [6-8]. 

If the parameterp (the coefficient c2) is small, approximate evaluation of the eigenvalues gl (1 = 1, 
2, 3) can make use of the expressions (3.8), which hold whenp = 0 (¢2 = 0) .  In the linear approximation 
with respect t op  (with respect to c2), the expressions for gt (l = 1, 2, 3) take the form 

Pq = J I ~ - P ( l + j 4 ) z / ( 2 j S ) ,  g2 = -P,  g3 = - J I ~ - P ( l + j 4 ) 2 / ( 2 j S )  

Determination of the unstable coordinate and construction of the controllability domain. A linear trans- 
formation of the variables with constant non-singular matrix K 

y = Kz (3.9) 

wherey = I[YlY2Y3 l] * (the asterisk denotes transposition), will bring system (3.4) to Jordan form: three 
scalar equations related to one another only by the control u 
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Y't = ~tlYl + dlu, l = 1, 2, 3 (3.10) 

where 

2(. 
KB = AK, A = diag[Ip./I I, a t = [Jl--~tl J3 + J4)]/J5 

Since system (3.4) is controllable in Kalman's sense, it follows that dl ~ 0 (l = 1, 2, 3). The elements 
of the matrix K = I lklk II (/, k = 1, 2, 3) can be evaluated using the relations 

ktl = gl(b31 +~tl)-b32,  kl2 = -bazbH +bl2(b31+~tl), kl3 = b l2 -~ lb l l  (3.11) 

The set of initial states in the space Y(Yl,  Y2, Y3) from which the system can be steered to the origin 
by a control voltage u for which the restriction (2.5) is satisfied is the strip [6-8, 15]. 

lylt < Idd u0/l~ (3.12) 

where 

Yl =kllt-O + kl2l~ + k131~' (3.13) 

and the elements kll , k12 , k13 are evaluated by formulae (3.11) with l = 1. The set (3.12), which we denote 
by Q, is known as the controllability domain [15]. 

Using relations (3.12) and (3.13), we can write bounds for the initial values of each of the phase 
variables 0~(0), [~(0), [Y(0), on the assumption that the two other variables vanish at the initial instant 
of time: 

[o~(o)l < ~ ,  Ifl(o)l < ~2, IB'(o)l < ~3; ~t = dt Uo, l = 1, 2,  3 (3.14) 
klz BI 

Synthesis o f  the stabilization law. When u = 0, the only "unstable" coordinate in system (3.10) isyl. 
The instability can be suppressed using linear feedback of the form 

u = )'Yl (3.15) 

provided that the constant gain ~/satisfies the inequality 

lal + dl~' < 0 (3.16) 

The positive eigenvalue gl of the open-loop system (3.10) (when u = 0), when the system is closed 
by feedback (3.15), becomes a negative eigenvalue gl = + d17. The negative eigenvalues g2 and g3 remain 
unchanged. 

Taking into account the restriction on the control voltage, the feedback becomes 

f 
-u  if ~/Yl -<-u0 

u = TYt if [~/yll--<U0 

[u  0 if TYl > u0 

(3.17) 

The domain of attraction V of system (3.10), (3.17) is the whole controllability domain Q [6-8]. 
Thus the feedback (3.17) provides the maximum possible domain of attraction and is in that sense 
optimal. 

The eigenvalues of the closed-loop system with feedback (3.15) are real, as are the eigenvalues of 
the open-loop system (3.10). Hence it follows that the transient in the closed-loop system with control 
(3.17) will be aperiodic for any initial conditions in the domain of  attraction V. Thus, the method of 
stabilization described guarantees not only the largest possible zone of attraction (for the linearized 
system) but also a periodicity of the transient. 
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4. D E C E L E R A T I O N  OF THE C Y L I N D E R  

Let us assume that the zero of the sensor of the angle ~, through which the pendulum is deflected form 
the vertical, is displaced by a quantity A~, and that this displacement remains constant throughout the 
control process (A[3 = const). When there is an error A[3, the control (3.17) becomes 

-u  if TYl < -u0 

u = ]TYl if TY~ <u0,  

| [ u  o if YY~ > Uo 

A 
Yl = kll(l)  + k12(~ 4- A~)  + k13~' (4.1) 

A steady-state solution of the non-linear system (2.6) and of the linear system (3.2), under the control 
(4.1), is described not by (3.3) but by the relations 

U ~/kl2AI ] 
p =  p ' = o ,  - P yk11 + p  (x' = -o l r )  (4.2) 

This solution is holds provided the control in the steady state is determined by the middle row of the 
formula (4.1). In other words, formulae (4.2) describe a steady-state solution if the displacement of 
zero A[3 is such that the value of the voltage u satisfies the restriction (2.5), that is 

PTkI2A~ _< u o 
ykll + p 

It is important to note that, irrespective of the presence of the error in the sensor for the deflection 
of the pendulum from the vertical, [3 will vanish in the steady state, just as when there is no such error. 

However, when that error occurs, the cylinder will not stop, but will continue to roll at constant angular 
velocity; the voltage in the steady state, like the angular velocity, will also be non-zero. As to the torque 
M of the electromagnetic forces operating between the stator and the rotor of the motor, it will vanish 
in the steady state (see (2.9)). 

In order to stop the cylinder rolling in the steady state, one can augment the linear feedback signal 
(4.1) with a signal proportional, with some constant coefficient g, to the displacement x(z) of the cylinder, 
a measured from a certain position x*: 

,[ 

g[x(x) - x*] = -gr  I co(~)d~ (4.3) 
,[* 

This can be verified theoretically using the non-linear system of equations (2.6) (or the linearized system 
(3.2)) with control (4.1). The signal (4.3) may be incorporated in the signal when a certain time "~* has 
passed since the beginning of the control process, in which case one would setx* = x(x*). In that case 
the set (3.12) will still be the domain of attraction. The signal (4.3) is proportional to the integral of 
the velocity of rotation of the cylinder. As is well known, when an integral term is incorporated into 
the feedback, the control process tends to become unstable. To avoid instability, the coefficient g should 
be chosen to be "not too" large. Admissible values of the coefficient from the standpoint of stability 
may be found using, for example, Hurwitz's criterion. 

5. C O N T R O L  OF T H E  M O N O C Y C L E  M O T I O N  

Let us assume now that the angle 13 is measured precisely and that the constant quantity A[3 is not a 
measurement error but a specially specified "setting" of the control law. Then, in the steady state, the 
cylinder will roll at a constant velocity, defined by the second expression in (4.2); the pendulum will be 
in the vertical position. Thus, having set the quantity A[3, one can control the motion of the cylinder. 
Under these conditions the feedback (4. l) obviously guarantees asymptotic stability of the motion (4.2). 

Suppose now that the cylinder, while in motion, is subject to a resistance force proportional, say, to 
its velocity of motion, f~0, whe re f  = const > 0. This force may be due to the resistance of the air or to 
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rolling friction. Then, in the first of equations (2.6), and also in the first of equations (3.2), one can add 
a term of the form 130), where 13 = const > 0 is a number proportional to the coefficient f. Given this 
force, the algebraic equations for the steady values of the coordinates 0), 13 are 

60~ = -  u -  pO), -j~sin13 = u + p0) (5.1) 

It follows from these relations that 

~0) = Jl sin [3 (5.2) 

Equation (5.2) shows that, when there is a force resisting rolling of the cylinder, the pendulum will be 
deflected from the vertical in the direction in which the cylinder is rolling, as is easily explained by physical 
considerations. Lacking such a resistance force, the pendulum will remain vertical (see formulae (4.42)). 

Assuming that the angle [3 is small and using control (4.1) instead of (5.1), we obtain a system of 
algebraic equations 

1~0) = - ] t [ k l l ~  + k12(13 + A ~ ) l  - p0) ,  130) = J l ~  

whose solution is 

- j l~k l2Al~  13 = 1~"--~ (5.3) 
03 = J l ( p  + Y k l l  +o)+Yklz(Y' Jl 

The voltage in the steady state is u = -(13 + p)m. If 13 = 0 ( f  = 0), relations (5.3) reduce to (4.2). 

6. N U M E R I C A L  I N V E S T I G A T I O N S  

Consider a device with the following parameter  values 

m I = 10kg, r =  0.2m, Pl = 0.1m, r 1 = 0.16m, m 2 = 75 kg, r 2 = 0 .9m,  92 = 0 .3m,  

m 3 = 0.85 kg, r 3 = 0.04 m, P3 = 0.03 m, X = 4, 

c I = 0 . 6 N m / V ,  c2=0.05 N m  s, U 0 = 1 9 V  

With these parameter  values, the positive eigenvalues is gl = 0.834 and the two other eigenvalues 
of the open-loop system are negative: g2 = -0.032 and g3 = -0.995. The maximum possible domain of 
attraction of the linearized system, with respect to the deflection angle of the pendulum (see the second 
inequality in (3.14)), is described by the inequality 113(0) 1 < 18.2 °. The coefficients kn, k12 and k13 , 
computed using formulae (3.11), take the values kll = -0.101, k12 = -2.58, k13 = -3.00. Inequality (3.16) 
with these parameter  values has the form 7 > 0.318. Numerical investigations of non-linear system (2.6) 
have been carried out for an optimal control (3.17) with coefficients 7kll = -0.0695, 7k12 -- -1.78, 
7k13 = -2.06, as obtained for 7 = 0.687. The results show that the domain of attraction for the angle ]3 
is "almost" the same as for the linearized system: ] 13(0)] < 17.8°. The solid curves in Fig. 2 represent 
the transient in the variables m, 13 (in degrees), x / r  and u, obtained by integration of the non-linear 
equations (2.6) and (3.17) with initial data 

m(0) = 13'(0) = x(0) = 0, ~(0) = MO ° (6.1) 

The solution of the system tends asymptotically to zero in the variables co, [~ and u. The variable x cyclic; 
naturally, it does not tend to zero, in fact becoming quite "large" by the end of the transient. This is 
due to the fact that the duration of  the transient is quite long, during which time the monocycle may 
have covered a substantial distance. The slow attention of the transient is explained by existence of the 
eigenvalue g2 = -0.032, which is close to the imaginary axis. We recall that when the system is closed 
by feedback (3.15) (or (3.17)), the positive eigenvalue gl = 0.834 of the open-loop system is displaced 
to the left of the complex half-plane; the other two eigenvalues (g2 = -0.032 and g3 = -0.995) remain 
unchanged. 
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Thus, the control law (3.17), which maximizes the domain of attraction, turns out to be rather 
unsatisfactory from the standpoint of the attenuation time of the transient and the distance through 
which the monocycle will move while its steady state is being stabilized. If the control is augmented at 
some time after the beginning of the stabilization process by a term of the form (4.3), describing feedback 
depending on the variable x, this distance may be reduced, without at the same time reducing the domain 
of attraction. The duration of the transient and the distance itself can also can be reduced by relaxing 
the requirement that the feedback coefficients must have optimum values, but maintaining asymptotic 
stability of the steady state. Relaxation of that requirement, however, does reduce the domain of 
attraction. 

Below we present the results of a numerical investigation of the non-linear system (2.6) with the 
following linear feedback with saturation 

vu0 if u_<-u 0 

u = .  if Iv[ < u0 

[u 0 if v > u  0 

(6.2) 

where v = kcoo} + k~13 + k~,[Y and the coefficients kco, k~ and k~, differ from the optimum coefficients. 
These coefficients are evaluated by designating the eigenvalues of the linear system (3.2) closed by the 
feedback u = v. If the close-loop system has, say, a three-fold eigenvalue, which we denote by g0, the 
expressions for these coefficients will be 

. 3 . 2 . 

= + J 5 ~ 0 ,  3Jsl ' t0  + J1 kf r p _  J.___.L__5 ( J3 + J4 2~ ko - p ---:-- kl~ = , = 3 + . ~t0/ (6.3) 
Jl J4 + 1 j4 + 1~, J1 ,'1 

The dashed curves in Fig. 2 depict the transient in the variables m, 13, x/r and u with the same initial 
data (6.1) as before. This transient was obtained by integrating the non-linear system (2.6) with feedback 
(6.2). The feedback coefficients are evaluated by formulae (6.3) with kt0 = -0.9: 

ko = -0.916, k~ = -3.13, k~. = -6.77 

Examination of the dashed curves in Fig. 2 clearly shows that the transient is attenuated far more rapidly 
than in the case of optimum coefficients designated to maximize the domain of attraction; the distance 
through which the monocycle will move is reduced approximately to one fifth of its previous value. The 
domain of attraction as a function of the angle [3 is somewhat narrower than that obtained with the 
optimum values of coefficients: [ 13(0) [ < 16.2 °. 

If the quantity Afl in control law (4.1) is specified as a function of time, it follows from Section 5 that 
the displacement of the monocycle may be controlled. Let  us consider the case in which A~i is defined 
as a trapezoidal function of time: 

kx, O<_T, <--X 1 

= ~ k'Cl' "l:l<'C<'~ 2 
AI~(I) [k(x I + 172) -- k17, 

[ 0 ,  Xl "I'X2 <-- X 

'~2 ~ 17 ----_ 171 + '~2 

(6.4) 

Figure 3 represents the solution of system (2.6), (4.1), (6.4) in the time interval 0 < x _< 100 with initial 
data 

o ( o )  = ~ ( o )  = ~ ' (o )  = x(O)  = o 

The parameters of the function (6.4) are chosen as follows: k = 0.066, xl = 4, z2 = 12. This solution 
was constructed for optimum values of the feedback coefficients. Over the time interval Xl -< "t < "1;2 
solution of the system tends to a steady motion in which 13 -- 0 and the angular velocity m = const. If 
"q + x 2 < z, the solution tends to the steady state [3 = m = x' = 0. By the time x -- 100 (t = 14.28 sec) 
the monocycle has almost stopped, after moving a distance x = 10 m. 
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7. E F F E C T  OF I N D U C T A N C E  IN T H E  R O T O R  C I R C U I T  
ON S T A B I L I T Y  

If  there is an inductance L in the rotor circuit of the motor,  transients will occur in the circuit, causing 
a delay in the control contour. In order to allow for such transients in the rotor circuit, equations (2.6) 
must be replaced by the complete equations (2.3), which include Kirchhoff 's equation. System (2.3) 
when u = 0 and under  control (3.17) has the solution 

t o = 9 ' = O ,  [ 3 = 0 ,  [3 '=0 ,  i = 0  (7.1) 
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Linearizing Eqs (2.3) about the solution (7.1) and replacing 9'  by co, we obtain the system 

(.0' + j413" = - U + p([~' - 0.)) 

j40) ' + j 3 ~ " - j l ] 3  = u - p ( ~ ' - t O )  

Oi' + i + p ( ~ ' - C O )  = U 

(7.2) 

which, under the control (3.17), also has the solution (7.1). The open-loop system(7.2) (i.e. with 
u = 0) has four eigenvalues, one of which is positive. At small values of 0, the other three are negative. 
Investigations show that as 0 is increased two negative eigenvalues merge and then become complex 
conjugates. 

If expression (3.15) for the linear feedback, with coefficients defined by (3.11), is substituted into 
(7.2), the results is a fourth-order system whose characteristic equation has the following form (g is 
the spectral parameter) 

• .(PY+ Y - 1)+pj,(,.~Y1- 1 ) = 0  ~40j5 + I't3J5 + g2[P( 1 +J3 + 2j4) --Jl 0 +J57] + btJl~.~l i ~11 (7.3) 

It follows from the condition that the coefficients of the polynomial (7.3) must be positive that the domain 
of asymptotic stability of solution (7.1) of system (7.3), (3.17) in the plane of the parameters O, 7 lies 
inside the angle 

0 < [J57 + (1 + J3 + 2 j4 )P] /J l ,  7 > ~tl (7.4) 

Moreover, it follows from the Hurwitz criterion that the domain of asymptotic stability lies beneath 
the curve 

2 
0 = - a l - ' -  " ±  "Ta2t'-a3t 

T(b3T_ bE ) (7.5) 

where 

• 2 4 2 
al = (1 +J4) ~lP, a2 = [ . t l ( p + l . t l ) [ ( l + j 3 + 2 j 4 ) P - J s l . t l ]  

2 . 2 
a 3 = IXl(p+l.tl)jS, b2 = j l l . t l (P+~l) ,  b3 = j l ( P + ~ l )  2 
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The curve (7.5) has a horizontal asymptote 

2 . 

_ I-tlJ5 
0 = 01 Jl(P +!Ill) 

and consequently, if the delay is 0 < 01 then, from the standpoint of asymptotic stability, any values of 
the gain y are admissible. If 0 > 02, where 

02 = 0 1 +  
lalP(1 + J 3  + 2 j4)  

J1(P+~I) 

the system is unstable, whatever the value of the gain y. 
Figure 4 shows the domain of asymptotic stability (the hatched area) in the 0, yplane for the numerical 

parameter values specified above, as obtained from (7.4) and (7.5). With these parameter values, 
01 = 0.97, 02 = 1.20. 
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